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第 1章

什么是 AI原生基础设施？

AI原生基础设施的本质，是让模型行为、算力稀缺与不确定性成为可治理的系统
边界。

AI原生基础设施并非简单的技术清单，而是一套面向“模型成为行为体、算力成为稀缺
资产、系统默认不确定”的新秩序。

AI原生基础设施的核心不是更快的推理或更便宜的 GPU，而是为模型行为、算力稀缺
与不确定性提供可治理、可度量、可进化的系统边界，使 AI系统在生产环境中可交付、
可治理、可演进。

1.1 为什么需要一个更严格的定义

“AI‑native infrastructure / architecture”这一术语被越来越多厂商采用，但其含义常常被
简化为“更适合 AI的数据中心”或“更完整的 AI平台交付”。

在实际应用中，不同厂商对 AI原生基础设施的理解各有侧重：

・ Cisco强调在 edge / cloud / data center全域交付 AI‑native infrastructure，并突出“开
放解耦（open & disaggregated）与集成系统（fully integrated systems）并存”的交付
路径（如 Cisco Validated Designs）。

・ HPE强调面向 AI全生命周期、用于模型开发与部署的 open, full‑stack AI‑native
architecture。

・ NVIDIA明确提出 AI‑native infrastructure tier，以支持长上下文与 agentic workload
的 inference context复用。

对于 CTO/CEO而言，一个可指导战略与组织设计的定义，需满足以下两点：

・ 能阐明 AI时代基础设施的第一性约束发生了哪些变化

・ 能将“AI‑native”从营销形容词收敛为可验证的架构属性与运行机制
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2 第 1章：什么是 AI原生基础设施？

1.2 一句话权威定义

AI原生基础设施（AI‑native infrastructure）是：

以“模型/智能体作为执行主体、算力作为稀缺资产、不确定性作为常态”为前提，通过
算力治理把“意图（API/Agent）→执行（Runtime）→资源消耗
（Accelerator/Network/Storage）→经济与风险结果”闭环起来的基础设施体系与运行
机制。

这一定义包含两层含义：

・ Infrastructure：不仅是软硬件堆栈，还包含规模化交付与系统性能力（与厂商普遍
强调的“全栈集成/参考架构/生命周期交付”一致）。

・ Operating Model：它必然改写组织与运行方式，而不仅是技术升级——预算、风险
与发布节奏会被强绑定到同一个治理回路中。

1.3 三个前提

AI原生基础设施的核心前提如下，图中给出了三条前提与治理边界的对应关系。

图 1‑1: AI原生基础设施三大前提

・ Model‑as‑Actor：模型/智能体成为“执行主体”

・ Compute‑as‑Scarcity：算力（加速器、互连、功耗、带宽）成为核心稀缺资产

・ Uncertainty‑by‑Default：行为与资源消耗高度不确定（agentic、long‑context场景下
更明显）

这三点共同决定：AI原生基础设施的核心任务并非“让系统更优雅”，而是在不确定行
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1.4边界：AI原生基础设施管什么、不管什么 3

为下，使系统可控、可持续，并具备规模化交付能力。

1.4 边界：AI原生基础设施管什么、不管什么

在实际工程中，明确边界有助于聚焦资源与能力建设。下表总结了 AI原生基础设施的
关注点与非关注点：

不聚焦于：

・ Prompt设计与业务级 agent逻辑

・ 单个模型的能力与训练秘诀

・ 应用层产品功能本身

专注于：

・ 算力治理（Compute Governance）：配额、预算、隔离/共享、拓扑与互连、抢占与
优先级、吞吐/时延与成本权衡

・ 执行形态工程化：训练/微调/推理/批处理/agentic workflow的统一运行、调度与观测

・ 闭环机制：意图如何被约束、如何被度量、如何映射到可控的资源消耗与经济/风险
结果

1.5 可验证的架构属性：三平面 +一闭环

为便于理解，以下内容介绍 AI原生基础设施的核心架构属性。

下图给出三平面与闭环的可视化结构，便于在评审时快速对齐边界。

图 1‑2:三平面与一闭环参考架构

三平面（Three Planes）：

・ 意图平面（Intent Plane）：API、MCP、Agent workflow、策略表达

3



4 第 1章：什么是 AI原生基础设施？

・ 执行平面（Execution Plane）：训练/推理/serving/runtime（含工具调用与状态管理）

・ 治理平面（Governance Plane）：accelerator编排、隔离/共享、配额/预算、SLO与成
本控制、风险策略

一闭环（The Loop）：

・ 具备“意图→消耗→成本/风险结果”闭环，方可称为 AI‑native。

这也是 NVIDIA将 inference context这类“新状态资产”的共享与复用上升为独立
AI‑native基础设施层的原因：本质上是将 agentic/long‑context造成的资源后果纳入可治
理的系统边界。

1.6 AI原生 vs云原生：差异在哪里

云原生（Cloud Native）关注在分布式环境下，以可移植、可弹性、可观测、可自动化的
方式交付服务，其治理对象主要是 service / instance / request。

AI原生基础设施则面向另一组结构性问题：

・ 执行单元变化：从 service的 request/response，迁移到 agent的 action/decision/side
effect

・ 资源约束变化：从 CPU/内存的可弹性，迁移到 GPU/吞吐/token的硬约束与成本上限

・ 可靠性形态变化：从“确定性系统的可靠交付”，迁移到“非确定性系统的可控运行”

因此，AI原生并非“在云原生上加一层模型”，而是将治理中心从 deployment迁移到
governance。

1.7 落地到工程：AI原生基础设施需要具备哪些能力

为避免“概念正确、落地失焦”，以下列举了最小闭环能力。

1.7.1 资源模型：把 GPU、上下文、token变成一等资源

云原生将 CPU/内存抽象为可调度资源；AI原生则需进一步将以下资源纳入治理：

・ GPU/加速器资源：按切分、共享、隔离、抢占进行调度与治理

・ 上下文资源：上下文窗口、检索链路、缓存命中、KV/推理状态资产复用等，直接影
响 token与成本
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1.7.2预算与策略：把“成本/风险”绑定到组织决策 5

・ token/吞吐：成为可计量的产能与成本载体（可进入预算、SLO与产品策略）

当 token成为“产能单位”，平台不再只是运行服务，而是在运营一座“AI工厂”。

1.7.2 预算与策略：把“成本/风险”绑定到组织决策

AI系统难以采用“上线即完工”的运作方式。预算与策略需成为控制面：

・ 预算超标时触发限流/降级

・ 风险升高时触发更严格的验证或关闭高风险工具

・ 版本发布与实验受“预算/风险余量”约束（将发布节奏制度化）

关键在于基础设施将组织规则固化为可执行策略。

1.7.3 可观测与审计：把模型行为变成可追责的可观测对象

传统可观测性关注 latency/error/traffic；AI原生需新增至少三类信号：

・ 行为信号：模型调用了哪些工具、读写了哪些系统、做了哪些动作、造成了哪些副
作用

・ 成本信号：token、GPU时间、缓存命中、队列等待、互连瓶颈

・ 质量与安全信号：输出质量、违规/越权风险、回退次数与原因

缺乏“行为可观测”，治理难以落地。

1.7.4 风险治理：把高风险能力纳入持续评估与控制

当模型能力接近“可造成严重伤害”的阈值时，组织需具备成体系的风险治理框架，而
非依赖单点提示词或人工 review。

可拆分为两层：

・ 系统层可信赖性目标：对安全、透明、可解释、可追责提出组织级要求

・ 前沿能力准备度评估：对高风险能力进行分级评估、上线门槛与缓释措施

价值在于：将“安全/风险”从理念转化为可执行的发布门槛与运行策略。

1.8 Takeaways / Checklist

以下清单可用于判断组织是否已进入 AI原生阶段：
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6 第 1章：什么是 AI原生基础设施？

・ 是否将模型视为“会行动的主体”，而非可替换 API？

・ 是否将算力与预算纳入业务 SLA与决策流程？

・ 是否将不确定性作为默认前提而非异常？

・ 是否存在对模型行为的审计、回滚与责任界定？

・ 是否有跨团队的 AI治理机制，而非单点工程优化？

・ 是否能解释系统的运行边界、成本边界与风险边界？

1.9 总结

AI原生基础设施的本质在于：以模型为行为主体、算力为稀缺资产、不确定性为常态，
通过治理与闭环机制，实现可交付、可治理、可演进的 AI系统。只有将这些能力工程
化，组织才能真正迈入 AI原生阶段。

1.10 参考文献

・ Cisco AI‑Native Infrastructure ‑ cisco.com

・ HPE AI‑native architecture ‑ hpe.com

・ NVIDIA Rubin: AI‑native infrastructure tier ‑ developer.nvidia.com

・ LF Networking: becoming AI‑native is a redefinition of the operating model ‑
lfnetworking.org

・ NIST AI Risk Management Framework ‑ nist.gov

・ Google SRE Workbook ‑ Error Budgets ‑ sre.google

・ OpenAI Preparedness Framework ‑ openai.com

6

https://www.cisco.com/site/us/en/solutions/artificial-intelligence/infrastructure/index.html
https://www.hpe.com/us/en/newsroom/blog-post/2023/12/introducing-an-ai-native-architecture-for-ai-driven-transformation.html
https://developer.nvidia.com/blog/inside-the-nvidia-rubin-platform-six-new-chips-one-ai-supercomputer/
https://lfnetworking.org/40362-2/
https://lfnetworking.org/40362-2/
https://www.nist.gov/itl/ai-risk-management-framework
https://sre.google/workbook/error-budget-policy/
https://openai.com/safety/preparedness/


第 2章

AI原生基础设施一页参考架构：三平面 +
一闭环

真正的架构价值，是让复杂系统在 5分钟内形成组织共识，而不是再造一套新技
术栈。

业界主流厂商在表达上各有侧重：Cisco更强调 AI‑native基础设施与 Cisco Validated
Designs等参考设计与交付体系；HPE强调面向 AI全生命周期的 open, full‑stack
AI‑native architecture；NVIDIA则明确提出为 long‑context与 agentic workloads的
inference context复用新增 AI‑native infrastructure tier。本章将这些视角收敛为一个可验
证的架构骨架：三平面 +一闭环。

本文“架构”是评审骨架，不是组件清单；目的是统一组织语言与评审边界，而不是再
造技术栈。

2.1 一页架构总览

下方为 AI原生基础设施三平面与闭环的参考架构详细图，帮助读者快速建立整体认知：

这张图可以理解为：AI原生基础设施的新控制面（意图）必须被治理平面约束，并在执
行平面产生可计量的资源后果。

这一点也是厂商叙事差异背后的共同点：Cisco用参考设计与交付体系把基础设施能力
可规模化复制；HPE用 open/full‑stack覆盖生命周期交付；NVIDIA则把“上下文状态资
产”的复用上升为独立基础设施层。三者都指向同一个问题：把 AI的资源后果纳入可
治理的系统边界。

2.2 三平面核心能力解析

本节将详细解析三平面各自的核心能力，帮助架构评审时明确关注点。
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8 第 2章：AI原生基础设施一页参考架构：三平面 +一闭环

图 2‑1:三平面详细架构图

2.2.1 意图平面（Intent Plane）

意图平面负责表达“我想要什么”，包括以下能力：

・ 推理/训练 API（入口与契约）

・ MCP/工具调用协议与工具目录（把工具访问标准化为“可声明的能力边界”）

・ Agent/Workflow（把任务拆解为可执行步骤）

・ Policy as Intent：优先级、预算、配额、合规/安全约束（以“意图”的形式前置）

关键点：意图平面不是起点本身；真正的起点是——意图能否被转译为可执行且可治理
的计划。否则 Agent/MCP只会放大不确定性：更多工具、更长链路、更大状态空间、更
不可控的资源消耗。

在架构评审时，建议关注以下问题：

・ 意图是否可声明（contract）与可拒绝（admission）？

・ 意图是否携带预算/优先级/合规约束（policy as intent）？

・ 意图到执行的转译是否可追踪（traceable）？

8



2.2.2执行平面（Execution Plane） 9

2.2.2 执行平面（Execution Plane）

执行平面负责把意图落地为“真实执行”，主要包括：

・ 训练、微调、推理 serving、批处理、agentic runtime

・ “状态与上下文”服务：缓存/KV/vector/context memory等，用于承载推理上下文、
检索结果、会话状态

・ 全链路观测钩子：token计量、GPU时间、显存、网络流量、存储 IO、队列等待等

需要强调一个产业趋势：当 long‑context与 agentic workload普及，“上下文”本身成为
关键状态资产，甚至可能上升为独立基础设施层。NVIDIA在 Rubin平台中明确提出
inference context memory storage，建立 AI‑native infrastructure tier，为 pod级提供共享
的、低延迟的 inference context以支持复用（面向 long‑context与 agentic workloads）。

评审要点聚焦三件事：

・ 执行是否可度量：是否能在 token/GPU/网络/存储维度做归因？

・ 状态是否可治理：上下文与缓存的生命周期、复用边界、隔离策略是什么？

・ 观测是否面向闭环：观测不是为了“看见”，而是为了“让治理能纠偏”。

2.2.3 治理平面（Governance Plane）

治理平面是 AI原生基础设施的“硬核差异化”，负责把资源稀缺与不确定性变成可控
系统：

・ 预算/配额/计费：按团队、租户、项目、模型、agent任务维度治理消耗

・ 隔离与共享策略：同卡共享、显存隔离、抢占、优先级、公平性

・ 拓扑感知调度：把 GPU、互连、网络、存储拓扑纳入 placement（尤其在训练与高吞
吐推理中）

・ 风险与合规控制：审计、策略执行点、敏感数据与访问控制

・ 与 FinOps/SRE/SecOps的联动：把成本、可靠性与风险纳入同一套运行机制

从厂商叙事看，这一层通常对应“参考架构 +全栈交付”：
Cisco强调在 AI基础设施中通过“fully integrated systems + Cisco Validated Designs”加
速与规模化交付；HPE以“open, full‑stack AI‑native architecture”强调端到端交付以支
撑模型开发与部署。

治理平面评审的底线问题是：你能否在预算/风险约束下做可解释的资源分配与降级

9



10 第 2章：AI原生基础设施一页参考架构：三平面 +一闭环

决策？

2.3 一闭环机制详解

本节介绍闭环机制的核心流程，帮助理解 AI‑native与 AI‑ready的本质区别。

闭环是 AI‑native与“AI‑ready”最容易混淆、也是最关键的分界线。

闭环的最小实现包含四步：

1. Admission（准入）：在入口就把意图与政策绑定（预算、优先级、合规）

2. Translation（转译）：把意图转译为可执行计划（选择 runtime、资源规格、拓扑
偏好）

3. Metering（计量）：对 token/GPU/网络/存储做端到端计量与归因

4. Enforcement（执行）：预算触发降级/限流/抢占；风险触发隔离/审计；SLO触发扩
缩/路由

换句话说：闭环不是“监控面板”，而是“治理驱动的实时纠偏机制”。
如果缺乏“意图→消耗→成本/风险结果”的闭环，系统容易在成本、风险、质量等方
向失控。

这也是为什么“AI‑native”经常伴随 operating model的变化：当系统的执行速度与资源
消耗都被模型/agent放大，组织必须把治理机制前置并制度化。LF Networking也明确
指出：成为 AI‑native不只是技术迁移，而是 operating model的重定义。

2.4 一页架构的实际用法

在后续章节中，这张“一页架构”可以反复复用为评审模板：

・ 讨论MCP/Agent：把它们定位到意图平面，并用闭环约束（admission/translation）避
免“意图泛滥”

・ 讨论 runtime与平台：放到执行平面，重点看可观测、可归因、可治理的状态资产
（context/cache/KV/vector）

・ 讨论 GPU、调度、成本：落到治理平面，以预算/隔离/拓扑/计量为抓手

・ 讨论企业落地：用闭环审视是否“真的 AI‑native”（是否能把成本/风险结果回写为可
执行策略）

如果你只能记住一句话：
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2.5总结 11

AI‑native的判定不在“用了多少 AI组件”，而在“是否存在可执行的治理闭环，把意图
约束为可控的资源后果与经济/风险结果”。

2.5 总结

一页参考架构为 AI原生基础设施提供了统一的系统语言和评审骨架。通过意图、执行、
治理三平面与闭环机制，组织能够在架构设计、资源治理和风险控制等方面实现高效协
同。未来，随着 AI‑native能力的不断完善，治理闭环将成为企业落地 AI的核心竞争力。

2.6 参考文献

・ NVIDIA AI Enterprise Reference Architecture ‑ nvidia.com

・ Google Cloud AI Infrastructure ‑ cloud.google.com

・ AWSWell‑Architected Framework ‑ aws.amazon.com
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第 3章

为什么必须从算力治理出发，而不是 API
设计

算力与治理边界，才是 AI原生基础设施架构的真正底线。

上一章给出了“三平面 +一闭环”的一页参考架构。本章将进一步聚焦一个 CTO/CEO级
别的核心问题：

AI原生基础设施到底应当如何分层？哪些属于 API/Agent的“控制面”，哪些属
于 runtime的“执行面”，哪些必须下沉到“治理面（算力与经济约束）”？

这个问题之所以关键，是因为过去一年大量“转向 AI”的平台公司，常见的误区是：把
AI当成 API形态变化，而不是系统约束变化。当你的系统从“服务请求”转向“模型行
为”（Agent的多步行动与副作用），真正决定系统边界的，往往不是 API设计是否优雅，
而是：算力、上下文与经济约束是否被制度化为可执行的治理边界。

本章的核心观点可以归纳为：

AI 原生基础设施必须从“后果（Consequence）”出发设计，而不是从“意图
（Intent）”出发堆叠能力；控制面负责表达意图，但治理面负责限定后果。

3.1 分层的目的：将“意图”与“资源后果”用工程结构绑定

在 AI原生基础设施中，MCP、Agent、Tool Calling等机制让系统能力增强的同时，也带
来了更高的风险。这里的风险并非抽象意义上的“不可控”，而是工程意义上的“后果
不可预算”：

・ 行为路径爆炸、长上下文与多轮推理带来资源消耗的长尾；
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3.2 AI原生基础设施五层结构与“三平面”映射 13

・ 同样的“意图”，可能导致数量级不同的 token、GPU时间，以及网络/存储压力；

・ 若缺乏治理闭环，系统会在“功能更强”的同时走向“成本与风险失控”。

因此，分层的根本目的不是抽象美学，而是实现一个硬约束目标：

确保每一层都能把上层“意图”翻译成可执行计划，并产生可计量、可归因、可
约束的资源后果。

换句话说，分层不是为了让架构图更清晰，而是为了把“谁在表达意图、谁在执行、谁
在承担后果”写进系统结构里。

3.2 AI原生基础设施五层结构与“三平面”映射

为了帮助理解分层逻辑，下图细化了上一章“三平面”架构，提出了更具落地性的“五
层结构”：

图 3‑1:意图到后果的分层治理关系

・ 上两层 =意图平面（Intent Plane）

・ 中间两层 =执行平面（Execution Plane）

・ 最底层 =治理平面（Governance Plane）

下方为五层架构的详细展开，展示了每一层的主要职责和典型能力：

需要特别指出，MCP属于 Layer 4（意图与编排层），而非 Layer 1。原因在于：MCP主
要定义“能力如何暴露给模型/Agent以及如何被调用”，解决的是控制面的一致性与可
组合性，但并不直接负责“能力调用的资源后果如何被计量、约束与追责”。

3.3 MCP/Agent是“新控制面”，但必须被治理层约束

MCP/Agent之所以被称为“新控制面”，是因为它们将系统的“决策”从静态代码迁移到
动态过程：

・ “工具目录 + schema +调用”构成可组合的能力面（capability surface）；

13



14 第 3章：为什么必须从算力治理出发，而不是 API设计

图 3‑2:五层架构图

・ Agent通过选择工具、调用工具、迭代推理来完成任务；

・ “策略”不再仅存在于代码分支，而以路由、优先级、预算与合规意图的形式被表达。

但需要强调一条基础设施立场，也是本章的立论基点：

MCP/Agent能表达意图，但 AI原生的关键在于：意图必须被翻译为可治理的执
行计划，并被计量与约束到经济可行的边界内。

这句话旨在纠正两个常见误区：

・ 控制面不是起点：将MCP/Agent视为“AI平台升级的入口”，容易导致系统走向“能
力优先”路径；

・ 治理面是底线：当算力与 token成为产能单位，任何不受约束的“意图表达”都会以
成本、延迟或风险的形式泄漏。

因此，系统分层应明确：Layer 4负责“表达”，Layer 1/2/3负责“兑现并承担后果”，而
治理闭环负责“纠偏”。
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3.4“上下文”正在上升为新的基础设施层 15

3.4 “上下文”正在上升为新的基础设施层

在传统云原生系统中，请求状态大多短命，更多依赖应用层状态管理，基础设施通常只
负责“运算与网络”，无需理解“请求上下文”的经济价值。

AI原生基础设施则不同。long‑context、多轮对话、multi‑agent推理让推理状态
（inference state）经常跨请求存活，并直接决定吞吐与成本。尤其是 KV cache与上下文
复用，正从“性能优化技巧”演变为“平台产能结构”。

可以总结为一条基础设施规律：

当某种状态资产（context/state）成为系统成本与吞吐的决定变量，它就会从应
用细节上升为基础设施层级。

这一趋势已在行业中逐步显现：推理上下文与 KV复用被明确上升为“基础设施层”能
力建设方向。未来还将扩展到分布式 KV、参数缓存、推理路由状态、Agent记忆等一系
列“状态资产”。

3.5 AI原生基础设施的底座：参考设计与交付体系

AI原生基础设施远不止“买几台 GPU”那么简单。与传统互联网服务相比，AI工作负载
有三大特征，使得“底座”必须更工程化、更产品化：

・ 拓扑依赖更强：网络 fabric、互联、存储层级与 GPU亲和性决定可用吞吐；

・ 稀缺资源更硬：GPU与 token吞吐的边界比 CPU/内存更“不可弹性化”；

・ 交付复杂度更高：多集群、多租户、多模型/多框架并存，只有“可复制交付”才可
能规模化。

因此，AI Infra不只是组件列表，更必须包含“可规模化交付与可重复运行”的体系能力：

参考设计（validated designs）

・ 将“正确的拓扑与配比”固化为可复用方案。

自动化交付

・ 将部署、升级、扩缩、回滚与容量规划制度化。

治理落地

15



16 第 3章：为什么必须从算力治理出发，而不是 API设计

・ 将预算、隔离、计量与审计作为默认能力，而非事后补丁。

从 CTO/CEO视角，这意味着：你买到的不是“硬件”，而是“可预期产能的交付体系”。

3.6 CTO/CEO视角下的“分层责任边界”

为便于企业内部对齐“谁负责什么、失败的代价是什么”，下表将“技术分层”映射到
“组织责任”，避免平台团队只做控制面、却无人承担后果边界。

层 典型能力 主要Owner
（建议）

失败的代价

Layer 5业务接口 SLA、产品体验、商
业目标

Product / Business 客户体验与收入
受损

Layer 4意图/编排
（MCP/Agent）

能力目录、workflow
、策略表达

App / Platform / AI
Eng

行为失控、工具
滥用

Layer 3执行
（Runtime）

serving、batching、
路由、缓存策略

AI Platform / Infra 吞吐不足、延迟
抖动

Layer 2上下文/状态 KV/cache/context
tier

Infra + AI Platform token成本飙升、吞
吐坍塌

Layer 1算力/治理 配额、隔离、拓扑调
度、计量

Infra / FinOps / SRE 预算爆炸、资源争用
、事故外溢

表 3‑1: AI原生基础设施分层与组织责任��射

可以看到，AI‑native的组织难点不在“有没有 agent”，而在“层间闭环是否建立”。当
模型驱动放大后果，组织必须将治理机制制度化为平台能力：预算可执行、后果可解
释、异常可追责、策略可回写。这才是“从算力治理出发”而非“从 API设计出发”的
真实含义。

16



3.7总结 17

3.7 总结

AI原生基础设施的分层设计，核心在于将“意图”与“资源后果”工程化绑定。控制面
负责表达意图，治理面负责限定后果。只有将治理机制制度化为平台能力，才能在能力
提升的同时，确保成本、风险与产能可控。未来，随着上下文、状态资产等新变量的基
础设施化，AI Infra的交付体系也将持续演进，成为企业可持续创新的底座。

3.8 参考文献

・ Google SRE ‑ Capacity Planning ‑ sre.google

・ AWSWell‑Architected ‑ Cost Optimization ‑ aws.amazon.com

・ Microsoft FinOps for AI ‑ learn.microsoft.com
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第 4章

AI原生基础设施的运行与治理：指标、预
算、隔离、共享、SLO→ Cost

AI原生基础设施的治理，关键在于如何用制度化方式闭环不确定性带来的成本与
风险。

云原生时代，系统运行通常被认为“基本确定”：请求路径可预估、资源曲线大体稳定、
扩缩容能及时响应负载变化。然而，进入 AI时代，这一假设已不再成立——不确定性
成为常态。

本章旨在为 CTO/CEO提供架构评审的关键结论：

AI原生基础设施的起点，是将不确定性视为默认输入；其目标，是对不确定性带
来的资源后果（成本、风险、体验）进行闭环治理。

这也是“becoming AI‑native”在组织语境中逐渐指向运行方式与治理模式的重塑：当系
统后果被放大，治理必须制度化。

4.1 什么是“不确定性系统”

在本手册中，“不确定性”并非概率论意义上的随机性，而是工程实践中的三类现象：

・ 行为不可预测：执行路径会随模型推理动态变化，尤其在 agentic过程（Agent智能
体流程）中尤为明显。

・ 资源消耗不可预测：token、KV cache、工具调用、I/O与网络开销呈现长尾与爆发
特征。

・ 后果不可线性推导：同一“意图”可能产生数量级差异的成本与风险结果。

因此，AI原生基础设施的基础设施问题已从“如何让系统更优雅”转变为：
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4.2不确定性的主要来源 19

如何在最坏情况发生时，系统仍具备经济可行性、可控性与可恢复性。

架构评审时，若无法回答“最坏情况是什么、上限在哪里、触发后如何降级/回退”，评
审的仍是确定性系统的惯性延伸，而非真正的 AI‑native。

4.2 不确定性的主要来源

下表总结了 AI原生基础设施中常见的不确定性来源及其具体表现，便于 CTO/CEO快速
引用。

类型 具体表现 影响层面

行为不确定性 Agent任务分解路径变化、
工具选择与调用序列变化
、失败重试与反思

成本、风险、弹性

需求不确定性 并发与 burst、长尾请求、
多租户干扰（noisy
neighbor）

资源池、体验、隔离

状态不确定性 上下文跨请求复用、KV
cache迁移与共享

性能、成本、治理

基础设施不确定性 网络/存储/互连敏感度高，
拥塞与抖动放大为尾延迟

体验、成本、稳定性

表 4‑1: AI原生基础设施不确定性来源与表现

4.2.1 行为不确定性（Behavior Uncertainty）

行为不确定性主要体现在 agent智能体任务分解路径的变化、工具选择与调用序列的动
态调整，以及失败重试、反思（reflection）、多轮规划导致的路径爆炸。工具与上下文
通过标准接口组合（如MCP协议化接入），系统能力面显著扩大，同时分支空间也成为
基础设施治理难题。
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20 第 4章：AI原生基础设施的运行与治理：指标、预算、隔离、共享、SLO→ Cost

更关键的是，工具调用并非“免费的外部函数”，它会占用上下文窗口并消耗 token预
算，放大成本与尾延迟压力。因此，行为不确定性不仅是产品层的“功能弹性”，更是
平台层的“成本与风险弹性”，必须被预算化、上限化、可审计化。

4.2.2 需求不确定性（Demand Uncertainty）

需求不确定性包括并发与 burst（峰值）、长尾请求（超长上下文、复杂推理）、多租户
下的相互干扰（noisy neighbor）。这推动 capacity planning从“均值容量”转向“尾部
容量 +治理策略”。

在 AI原生基础设施中，决定体验与成本的往往不是平均请求，而是尾部请求的组合：
少量长链路、长上下文、工具密集型请求，足以拖垮共享资源池。因此，需求不确定性
要求回答：哪些请求值得保障、哪些必须限额、哪些应被隔离。

4.2.3 状态不确定性（State/Context Uncertainty）

状态不确定性是 AI时代最易被低估的一类：上下文是状态资产，且常跨请求存在。当
推理（inference）的 state / KV cache被提升为可复用、可共享、可迁移的系统能力时，
它不再是应用细节，而是吞吐与单位成本的决定变量。NVIDIA在公开材料中将
Inference Context Memory Storage作为新的基础设施层，指向 long‑context与 agentic
workload的状态复用与共享诉求。

结论是：“上下文/状态”从可选优化，变为基础设施的关键资产，必须可计量、可分配、
可治理。

4.2.4 基础设施不确定性（Infrastructure Uncertainty）

AI负载对网络、互连、存储的敏感度远高于传统微服务负载。拥塞、丢包、I/O抖动会被
放大为 tail latency与作业完成时间的不稳定，进而在体验与成本上形成“非线性后果”。

这类不确定性通常无法通过“组件选型”解决，而是需要端到端路径的工程约束：从拓
扑、带宽与队列，到传输协议、隔离策略与拥塞控制，都需纳入治理面，而不仅是运
维面。

4.3 不确定性如何跨层放大

下图展示了指标、预算与隔离策略构成的闭环关系，用于强调治理必须可回写。

下方流程图展示了不确定性在 AI原生基础设施中的跨层放大路径：
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4.3不确定性如何跨层放大 21

图 4‑1: SLO到成本的闭环关系

图 4‑2:不确定性跨层放大链路
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22 第 4章：AI原生基础设施的运行与治理：指标、预算、隔离、共享、SLO→ Cost

典型现象包括：

・ Agent分支爆炸：工具越多、可组合路径越多，尾部成本越不可控。

・ 上下文膨胀：长上下文与多轮推理让 KV cache成为性能瓶颈与成本黑洞。

・ 资源竞争失真：多租户下 GPU/网络争用使“平均性能”失去意义，必须治理尾部。

因此，AI‑native的核心不是“让执行更强”，而是让你能稳定回答三个问题：

・ 上限在哪里（预算、步数、调用次数、状态占用）

・ 越界怎么办（降级、回退、隔离、阻断）

・ 结果如何回写（策略迭代与成本纠偏）

4.4 AI原生基础设施的工程响应

企业评审时可参考以下五项“硬标准”，缺一项则无法闭环治理不确定性。

Admission：入口准入控制

・ 对超长上下文、超大 tool graph、超高预算的请求做分级准入

・ 将“预算、优先级、合规”绑定为意图的一部分（policy as intent）

・ 明确拒绝理由，解释为何拒绝请求

入口的职责不是“放行功能”，而是将后果约束写进契约。

Translation：意图转译为可治理执行计划

・ 为请求选择 runtime、路由/批处理策略、缓存策略

・ 对 agent工作流做“上限化”：最大步数、最大工具调用、最大 token

・ 纳入可回退路径：确定性替代、缓存答案、人工/规则兜底

从“prompt驱动执行”升级为“计划驱动执行”，计划必须能被治理面理解与约束。

Metering：端到端计量与归因

・ 对每个请求/agent任务的 tokens、GPU time、KV cache footprint、I/O、网络进行计量

・ 按租户、项目、模型、工具归因，形成成本与质量口径

・ 单独标记“尾部开销”，让长尾不再隐藏在平均值里

没有账本，就没有预算；没有归因，就没有治理，更谈不上 ROI。

22



4.5总结 23

Enforcement：预算与降级机制

・ 预算触发：限流、降级、抢占、排队（按优先级与租户隔离）

・ 风险触发：隔离

4.5 总结

AI原生基础设施的治理核心在于将不确定性前置、分层计量、策略反馈与制度化约束，
形成成本与风险的闭环。只有具备 Admission、Translation、Metering、Enforcement等
工程机制，才能在不确定性常态下实现经济可行、可控、可恢复的系统运行。

4.6 参考文献

・ Google SRE Book ‑ Service Level Objectives ‑ google

・ FinOps Foundation ‑ AI Cost Management ‑ finops.org

・ OpenAI Usage Policies ‑ openai.com
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第 5章

组织与文化：Operating Model如何变化

算力治理闭环，是 AI‑native组织可持续创新的底层保障。

API / Agent / MCP解决的是“意图如何表达”；算力治理解决的是“意图的资源后果是否
经济可行、风险可控”。在 AI时代，后者成为前者的前置条件。治理缺失的 API‑first，只
会放大成本与不确定性，把组织推向“功能可用但不可持续”的陷阱。

FinOps Foundation在《Scaling Kubernetes for AI/ML Workloads with FinOps》中直言：
Kubernetes的弹性极易演化为 runaway cost problem。因此，FinOps不应只是成本报
表，而必须成为共同的 operating model，让每一次扩展决策都同时回答两件事：性能
SLO是否满足，以及是否负担得起。

5.1 API‑first的“隐含假设”在 AI时代的挑战

下图展示平台、ML与安全团队的责任边界与责任链关系。

图 5‑1:组织责任边界与责任链

API‑first的直觉路径是：先跑通接口与工作流，随后再通过工程化逐步优化性能与成本。
在 AI原生基础设施中，这条路径经常失效，因为它依赖三条在 AI时代已不再成立的隐
含假设。

假设一：资源不是核心稀缺
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5.2算力治理的本质：治理的对象是什么 25

传统软件将稀缺性押注在工程效率、吞吐、稳定性；而 AI原生基础设施的稀缺性首先
来自 GPU /互连 /功耗这些资产边界。稀缺不再是“扩容慢”，而是“扩不动且贵”，并
且受供应链与机房条件共同约束。

假设二：请求成本可预测

传统请求的成本分布相对稳定；AI请求则天然长尾：agentic任务的分支、长上下文的
膨胀、工具调用的链式放大，都会让 token与 GPU time变成不可线性外推的随机变量。
你以为在扩“QPS”，实际上在扩“尾部概率事件的总成本”。

假设三：状态是短命、可丢弃的

云原生时代强调无状态扩展，将状态外置；但在推理侧，推理状态/上下文复用常常决
定单位成本是否可控。NVIDIA在 Rubin的 ICMS（Inference Context Memory Storage）中
将其描述为“新推理范式带来的 context storage challenge”：KV cache需要跨会话/跨服
务复用，sequence length增长导致 KV cache线性膨胀，迫使其持久化与共享访问，形
成“新的 context tier”，并用 TPS与能效收益证明这不是锦上添花，而是规模化的门槛。

在 AI原生基础设施中，状态与算力治理已成为“能否运行”的前置条件，而非后续优
化项。

5.2 算力治理的本质：治理的对象是什么

“算力治理”常被误解为“管理 GPU”，但真正要治理的是意图的资源后果。更准确地
说，治理的是四类对象的组合效应：

Token经济（Token Economics）

・ 每个请求/任务的 token消耗、上下文膨胀、工具定义与中间结果带来的隐性 token
税，最终直接映射为成本与延迟。

加速器时间（Accelerator Time）

・ GPU time、显存占用、批处理策略、路由与缓存命中对有效吞吐的影响。关键不在于
“有没有 GPU”，而是“单位 GPU时间产出是否可控”。

互连与存储（Fabric & Storage）

・ 训练 all‑reduce、推理 KV/cache共享、跨服务数据移动带来的网络与存储压力。AI的
性能与成本往往被 fabric放大，而不是被 API放大。

组织预算与风险（Budget & Risk）

25



26 第 5章：组织与文化：Operating Model如何变化

・ 多租户隔离、公平性、审计、合规与可追责。这些决定系统能否扩展到多个团队/业
务线，而不仅是把 demo扩到更多实例。

FinOps Foundation也强调：AI/ML的成本驱动不仅是 GPU，存储
（checkpoints/embeddings/artefacts）、网络（分布式训练/跨 AZ）以及额外许可与
marketplace费用，常常会“悄悄超过算力”。因此，治理对象必须覆盖端到端，而不是
只盯推理账单。

5.3 MCP/Agent：治理缺失下的放大效应

MCP/Agent扩大的是“能力面”，但同时会让成本曲线更陡，尤其在治理缺失时表现为
指数级放大：

・ 工具越多，分支越多：计划空间变大，长尾概率上升，成本波动不可控。

・ 工具定义与中间结果占用上下文：直接消耗 context window与 token，转化为成本与
延迟。

・ 更强的工具使用能力触发更多外部 I/O：外部系统调用、网络往返、数据搬运都会进
入整体成本函数。

Anthropic在“Code execution with MCP”中明确指出：直接工具调用会因工具定义与中
间结果占用 context window而增加成本与延迟；当工具数量上升到几百上千时，会成为
规模化瓶颈，因此提出用代码执行形态提升效率、减少 token消耗。

在MCP/Agent时代，治理不是压制创新，而是让创新在预算边界内可持续。治理缺失
时，Agent不是生产力工具，而是成本放大器。

5.4 “算力治理优先”的最小实现路径

你可以不绑定任何厂商，但必须实现一个“最小可行治理堆栈”。目标不是完美，而是
让系统从第一天就具备可控的边界条件。

准入与预算（Admission + Budget）

・ 为工作负载类型（training / inference / agent tasks）设定预算与优先级。

・ 将预算、最大步数、最大 token、最大工具调用次数纳入 policy‑as‑intent，并在入口
强制执行。

FinOps的核心观点是：将 FinOps早期嵌入架构，让每次扩展同时回答“性能”与“可
负担性”，否则账单只会在事故发生时才被关注。
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5.5反模式清单 27

端到端计量与归因（Metering + Attribution）

・ 至少做到一条可追溯链路：request/agent → tokens→ GPU time/显存→网络/存储→
成本归因（租户/项目/模型/工具）。

・ 没有归因，就没有治理；没有治理，企业内就无法规模化，因为成本与责任无法对
齐，组织会在“谁消耗了预算”上内耗。

隔离与共享（Isolation + Sharing）

・ 共享用于提高利用率；隔离用于降低风险。两者必须同时存在，而不是二选一。

・ CNCF的 Cloud Native AI报告指出：GPU虚拟化与共享（如MIG、MPS、DRA等）能提
升利用率、降低成本，但需要谨慎编排与管理，并要求 AI与云原生工程团队协作。

・ 治理的关键不是选择共享还是隔离，而是将其变成可执行策略：谁在什么条件下共
享，谁在什么条件下隔离。

拓扑与网络作为一等公民（Topology + Fabric First）

・ AI训练与高吞吐推理对网络特性高度敏感。

・ Cisco的 AI‑ready基础设施设计指南与相关 CVD/Design Zone强调：为 AI/ML工作负载
构建高性能、lossless Ethernet fabric，并通过 validated designs交付参考架构与部署
指南。

・ 这意味着拓扑不是“机房同学的事”，而是决定 JCT、尾延迟与容量模型是否成立的
核心变量。

上下文/状态成为治理对象（Context as a Governed Asset）

・ 当 long‑context与 agentic成为主流，KV cache与 inference context的复用将直接决定
单位成本。

・ NVIDIA的 ICMS将其定义为“新的 context tier”，用于解决 KV cache复用与共享访问，
并强调 TPS/能效收益。

・ 在这个时代，把上下文当作临时变量，是主动放弃成本控制权。

5.5 反模式清单

以下反模式并非“工程不优雅”，而是在组织层面会触发失控，值得警惕。

API‑first，把治理当后续优化
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28 第 5章：组织与文化：Operating Model如何变化

・ 结果：系统先上线，后发现单位成本与尾延迟不可控，只能通过限功能/限流进行
“硬刹车”，最终把产品路线锁死。

・ 对照：FinOps指出弹性很容易变成 runaway costs，必须将成本治理提前进入架构
决策。

把MCP/Agent当能力加速器，不把它当成本放大器

・ 结果：工具越多越“聪明”，但 token与外部调用成本指数上升，工程团队被迫用
“更复杂的提示词与规则”去对抗系统性放大。

・ 对照：Anthropic指出工具定义与中间结果会占用上下文、增加成本与延迟，并提出
更高效的执行形态作为规模化路径。

只买 GPU，不做共享/隔离与编排

・ 结果：利用率低、争用严重、预算爆炸，组织内部互相指责“谁在抢资源、谁在
烧钱”。

・ 对照：CNCF Cloud Native AI报告强调共享/虚拟化能提升利用率，但必须配套编排与
协作机制。

忽视网络与拓扑，把 AI当普通微服务

・ 结果：训练 JCT与推理 tail latency被网络放大，容量规划与成本模型失效，扩容越多
越不稳定。

・ 对照：Cisco在 AI‑ready网络设计与 validated designs中将 lossless Ethernet fabric等
要求作为 AI/ML的关键基础。

5.6 总结

AI‑native的第一性入口是算力治理闭环：预算与准入、计量与归因、共享与隔离、拓扑
与网络、上下文资产化。API / Agent / MCP依然重要，但必须被这套闭环约束，否则系
统只能在“更聪明”与“更破产”之间摇摆。

5.7 参考文献

・ MIT Sloan ‑ sloanreview.mit.edu

・ Google Cloud ‑ cloud.google.com

・ OECD AI Principles ‑ oecd.ai
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第 6章

迁移路线图：从云原生到 AI原生

迁移不是“重建平台”，而是用治理闭环和组织合同，把不确定性转化为可控的
工程能力。

前五章已经明确：AI原生基础设施是 Uncertainty‑by‑Default（不确定性为常态）。因
此，架构起点必须是算力治理闭环，而非“接入模型即完成迁移”。否则，系统极易在
成本（runaway cost）、风险（越权/副作用）、尾部性能（P95/P99与队列尾巴）三个维
度失控。

这也解释了 FinOps Foundation强调：在 Kubernetes上跑 AI/ML，“弹性”极易演化为不
可控的成本外溢。FinOps必须作为共享 operatingmodel前置进入架构与组织，而非事
后对账。

本文将给出一份可执行的迁移路线图，涵盖技术演进路径与组织落地方式。你无需一次
性“重建 AI平台”，但必须在每个阶段跑通治理闭环：预算/准入、计量/归因、共享/隔
离、拓扑/网络、上下文资产化。

6.1 迁移的北极星：从交付平台到治理闭环

下图展示从旁路试点到 AI‑first重构的迁移路径。

图 6‑1: AI原生迁移路线图

云原生迁移通常以“交付能力”为中心：CI/CD、自助平台、服务治理、弹性伸缩。其默
认假设是系统确定、成本随请求线性增长、扩缩容不会显著改变系统边界。

AI原生迁移则必须以“治理闭环”为中心，聚焦成本、风险、尾部性能、状态资产。其
默认假设恰好相反：系统天然不确定，推理/Agent的“动作与后果”会将成本与风险带
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30 第 6章：迁移路线图：从云原生到 AI原生

入非线性区域。

AI‑Native Migration =建立 AI Landing Zone + Compute Governance Loop + Context
Tier，并让所有 agent/API/runtimes在该闭环内运行。

这里将“Landing Zone”提升到北极星层级，不是追热点，而是因为它天然承担一项组
织级任务：划清平台团队与工作负载团队的责任边界。主流云厂普遍用 Landing Zone
承载“共享治理基线”（网络、身份、策略、审计、配额/预算），业务团队则在受控边界
内自助迭代应用。对 AI而言，这种边界是治理闭环的承载体。

6.2 迁移前置条件：先补三块地基，再谈应用爆发

你可以并行做 PoC、做应用，但如果这三块地基缺失，任何“应用爆发”都可能转化为
平台救火与财务争议。

地基 A：FinOps / Quotas as Control Plane（财务与配额是控制面）

迁移第一步不是“上线第一个 Agent”，而是将预算、告警、showback/chargeback、配
额纳入基础设施控制面：

・ 预算与告警不仅是财务报表，更是运行时策略的触发器（限流、降级、排队、抢占）。

・ showback/chargeback不只是算账，更是将“成本后果”绑定到组织决策与产品边界。

・ 配额不是静态限制，而是可演进的治理手段（按租户/团队/用例的动态预算与优
先级）。

如果无法将每个 agent/job的主要消耗归因到 team/project/model/use‑case（至少覆盖
tokens、GPU time、KV footprint、关键网络/存储），则尚未达到“规模化”起跑线。可
以试点，但不宜扩展。

地基 B：Resource Governance（GPU共享/隔离与编排能力）

AI原生基础设施的“弹性”受制于稀缺算力的治理方式。将 GPU当普通资源，结果往往
是利用率低与争用失控。因此需具备可落地的共享/隔离与编排能力组合：

・ 共享/切分：MIG/MPS/vGPU等路线，让“独占”变为“池化”。

・ 调度升级：引入拓扑、队列、公平性、抢占、成本等级的显式建模。

・ 编排闭环：将隔离、抢占、优先级策略固化为可执行规则。

关键不在于选哪种切分技术，而在于能否将 GPU从“机器资产”提升为一等治理资源，
并纳入预算与准入体系。
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6.3迁移路径选择：按组织风险与技术债务分层 31

地基 C：Fabric as a First‑Class Constraint（网络/互连是一级约束）

训练与高吞吐推理对拥塞、丢包、尾延迟极度敏感。忽视网络与拓扑，易导致“看似偶
发、实则结构性”的问题：

・ 训练 JCT被尾部放大，容量规划失效；

・ 推理 P99与排队尾巴被放大，SLO难以兑现。

因此需构建可复用的 AI‑ready网络基线：容量假设、lossless策略、隔离域划分、测量
与验收口径。网络不是“后面再优化”，而是 Day 31 – 60必须落地的基线工程。

6.3 迁移路径选择：按组织风险与技术债务分层

迁移不是“选一条路走到黑”，而是将不同风险偏好与债务结构的组织，映射到不同起
步方式与退出标准。可并行推进，但需为每条路径定义适用条件与退出标准。

路径一：旁路试点（Bypass Pilot / Skunkworks）

适用于云原生平台稳定运行，但 AI需求刚起、组织不确定性高、治理机制尚未成型的
场景。

做法是在现有平台旁建立“AI最小闭环沙箱”，目标不是“功能齐全”，而是“闭环
跑通”：

・ 独立 GPU池（或至少独立队列）+基本准入与预算

・ 最小 token/GPUmetering与归因

・ 受控推理/agent入口（max context / max steps / max tool calls）

・ “失败可接受”的 SLO与成本上限（先定义边界，再谈体验）

退出标准：

・ 成本曲线可解释（至少能归因到团队/用例）

・ GPU利用率与隔离策略形成可复用模板

・ 试点能力可下沉为平台能力（进入路径二）

路径二：分域隔离的平台化（Domain‑Isolated Platform）

适用于 AI已进入多团队、多租户阶段，需要将“试点资产”沉淀为平台能力，防止成本
与风险跨域扩散。
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32 第 6章：迁移路线图：从云原生到 AI原生

做法是建设 AI Landing Zone，由平台团队集中管理共享治理能力，工作负载团队在受控
边界内自助迭代应用。

平台侧必备模块（建议按“治理闭环”组织）：

・ Identity/Policy：统一身份、策略下发与审计（policy‑as‑intent）

・ Network/Fabric baseline：AI‑ready网络基线与自动化验收

・ Compute governance：配额、预算、抢占、公平性、隔离/共享

・ Observability & Chargeback：端到端计量、告警、showback/chargeback

・ Runtime catalog：推理/训练 runtime的“黄金路径”与模板化交付

退出标准：平台提供“可复制的 AI工作负载落地方式”，并能在预算约束下扩展用例数
量，而非靠人工救火维持稳定。

路径三：AI‑First重构（AI Factory / Replatform）

适用于 AI已是核心业务，需要将基础设施当作“生产线”而非“集群”，并将优化目标
从“上线功能”切换为“吞吐/单位成本/能效”。

做法围绕“状态资产 +单位成本”重构：

・ 推理/agent的 context/state被显式治理与复用（不再是应用内技巧）

・ 引入 Context Tier架构假设：长上下文与 agentic推理要求 inference state / KV cache
能跨节点、跨会话复用

・ 用“单位 token成本、尾部延迟、吞吐/能效”驱动平台演进，而非“新增组件数量”

退出标准：能持续用“单位成本与尾部性能”做工程决策，并将上下文复用当作平台能
力，而非应用团队的技巧性缓存。

6.4 90天可执行计划：AI Landing Zone +最小治理闭环

目标是在 90天内跑通“AI Landing Zone +最小治理闭环”，形成可复制模板。关键不是
覆盖所有场景，而是打通准入—计量—执行—反馈闭环。

Day 0 – 30：账本立起来（Cost & Usage Ledger）

首先需定义归因维度，建立 budgets/alerts与基线报表，并落地 quotas / usage controls。

・ 归因维度：tenant/team/project/model/use‑case/tool

・ 建立预算与告警、基线报表（成本 +业务价值指标）
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6.5 Operating Model：平台团队与工作负载团队的“合同” 33

・ 落地配额与用量控制（至少覆盖 GPU配额与关键服务配额）

交付物：

・ 成本与用量看板（周报级、可追溯）

・ “准入策略 v0”（max context / max steps / max budget）

Day 31 – 60：资源治理立起来（GPU Governance + Scheduling）

此阶段需评估 GPU共享/隔离策略，引入拓扑/网络约束，形成推理与训练两类黄金
路径。

・ GPU共享/隔离策略：MIG/MPS/vGPU/DRA路线评估与 PoC（以可执行策略为验收）

・ 引入拓扑/网络约束，形成 AI‑ready网络基线与容量假设（含验收口径）

・ 形成推理/训练两类模板化交付路径

交付物：

・ 工作负载模板（推理与训练各 1个）

・ 调度与隔离策略（白名单化、可审计）

Day 61 – 90：闭环立起来（Enforcement + Feedback）

最后阶段需执行预算策略，将试点用例迁移到 landing zone，并固化组织接口。

・ 执行预算：限流/排队/抢占/降级策略，并与 SLO联动

・ 迁移试点用例到 landing zone（或将 landing zone能力服务化）

・ 固化“组织接口”：平台团队 vs工作负载团队责任边界（形成可执行合同）

交付物：

・ “AI平台运行手册 v1”（含 oncall、变更、成本审计）

・ 两条可复制的用例落地路径（新增用例≤30分钟上线黄金路径）

6.5 Operating Model：平台团队与工作负载团队的“合同”

迁移能否成功，取决于是否建立了清晰、可执行的“组织合同”。合同本质是：谁为
“能力供给”负责，谁为“行为后果”负责。

平台团队提供（必须稳定）
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34 第 6章：迁移路线图：从云原生到 AI原生

Landing zone、网络基线、身份与策略、预算/配额体系、计量归因、GPU治理能力、运
行时黄金路径

工作负载团队负责（必须自助）

模型选择、prompt/agent逻辑、工具接入、SLO定义、业务价值度量、用例风险分级与
回退路径

这也是 FinOps Framework强调 operating model（personas、capabilities、maturity）而
不仅是工具的原因：没有“合同”，预算难以执行；预算无法执行，闭环难以成立。

6.6 迁移反模式

以下为常见迁移反模式及其后果：

反模式 典型后果

只建 API/Agent平台，不建账本与预算 runaway cost（最常见，且事后补救难度
大）

把 GPU当普通资源，不做共享/隔离与调
度升级

利用率低 +争用失控，平台被迫以“行政
手段”分配算力

忽视网络与拓扑 尾部延迟与训练 JCT被放大，容量规划
失效，SLO难以兑现

上下文不资产化（只在应用里做“技巧性
缓存”）

长上下文/agentic时代单位成本失控，
复用能力难以平台化沉淀

表 6‑1:常见迁移反模式与后果

6.7 总结

AI原生迁移的核心，不是“迁移清单”，而是在不确定性前提下，将成本、风险、尾部
性能纳入同一治理闭环，并用 Landing Zone承载组织合同，用 Context Tier实现状态
复用的基础设施能力。只有这样，才能让平台与业务在规模化演进中保持可控与高效。
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6.8 参考文献

・ McKinsey on AI Strategy ‑ mckinsey.com

・ Thoughtworks Technology Radar ‑ thoughtworks.com

・ Google Cloud Adoption Framework ‑ cloud.google.com
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第 7章

术语表

统一术语是组织形成共识的第一步。

结论先行：在 AI原生基础设施语境中，关键术语必须保持一致，否则治理与沟通都会
失焦。

以下术语表用于跨团队对齐。

7.1 核心术语

AI原生基础设施 / AI Native Infrastructure

以“模型/智能体作为执行主体、算力作为稀缺资产、不确定性作为常态”为前提，通过
算力治理把“意图→执行→资源消耗→经济与风险结果”闭环起来的基础设施体系。

模型行为体 / Model‑as‑Actor

模型/智能体成为“执行主体”，具备行动能力，会调用工具、修改系统状态、产生副作
用，因此需要治理与审计。

算力稀缺 / Compute‑as‑Scarcity

算力（GPU、互连、功耗、带宽）成为核心稀缺资产，扩容受供应链与机房条件约束，
成本不可弹性化。

默认不确定 / Uncertainty‑by‑Default

行为与资源消耗高度不确定（尤其在 agentic、long‑context场景下），需要验证与回退
机制。

意图平面 / Intent Plane

API、Agent、策略表达层，负责表达“我想要什么”，包括优先级、预算、合规等策略。

执行平面 / Execution Plane
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7.2参考文献 37

训练/推理/serving/runtime层，负责把意图落地为真实执行，包括状态管理、工具调
用、模型路由等。

治理平面 / Governance Plane

配额/预算、隔离/共享、成本控制层，负责限定资源后果，包括拓扑感知调度、SLO与
风险策略。

闭环 / The Loop

具备“意图→消耗→成本/风险结果”闭环，包括四个步骤：Admission（准入）、
Translation（转译）、Metering（计量）、Enforcement（执行）。

算力治理 / Compute Governance

治理意图的资源后果，包括四类对象：Token经济、加速器时间、互连与存储、组织预
算与风险。

FinOps / Financial Operations

将成本治理早期嵌入架构，让每次扩展决策同时回答“性能是否满足”与“是否负担
得起”。

Agent /智能体

通过选择工具、调用工具、迭代推理来完成任务的行为主体，其行为路径与资源消耗具
有不确定性。

MCP / Model Context Protocol

把工具访问标准化为“可声明的能力边界”的协议，定义能力如何暴露给模型/Agent以
及如何被调用。

运行模型 / Operating Model

组织与运行方式的制度设计，包括责任边界、协作机制与决策流程，回答“谁负责什
么、失败的代价是什么”。

7.2 参考文献

・ ISO/IEC 22989 AI Concepts and Terminology

・ NIST AI Glossary

・ OECD AI Glossary
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第 8章

检查清单（10问）

以下 10个问题用于判断组织是否具备 AI原生基础设施的战略与执行准备。下图将问题
分为战略、治理、执行三类，便于会议讨论。

图 8‑1:检查清单结构图

1. 你能否把每个主要 AI工作负载的单位成本定义清楚（例如：每 1M tokens、每次
agent任务、每个 batch作业）？

2. 你是否具备预算/配额机制，能把团队/项目/租户的算力消耗限制在可控范围？

3. 你是否能在“性能（吞吐/时延）—成本—风险”之间做显式的政策选择（而不是靠
口头约束）？

4. 你的平台是否能处理不确定性：峰值、长尾、agent路径爆炸导致的资源波动？

5. Agent/MCP的“意图”是否被映射到可执行且可计费/可审计的资源后果？

6. 你是否有明确的资源隔离与共享策略（同卡共享、显存隔离、抢占、优先级）来提
升利用率？

7. 你能否做到跨层可观测：从请求/agent→ runtime→GPU/网络/存储→成本的端到
端链路？

8. 你的基础设施是否支持快速引入新硬件/互连/拓扑变化（异构与演进是常态）？

9. 组织层面是否建立了“AI SRE / ModelOps + FinOps”的协作机制与责任边界（谁为
成本与可靠性负责）？
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8.1参考文献 39

10. 当你说“我们是 AI‑native”，你是否能在一页纸上给出三平面 +一闭环的架构图与
治理策略？

8.1 参考文献

・ Harvard Business Review ‑ AI Strategy

・ MIT Sloan ‑ Executive Guide to AI

・ World Economic Forum ‑ AI Governance
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